

Applicability of IETF Mobility Solutions to the 3GPP All IP Network

SPONSORED BY TH

- ▶ Patrick Stupar, Krishna Pandit, and Wolfgang Granzow
- Qualcomm CDMA Technologies GmbH

Outline

- Motivation
- ▶ All-IP paradigm in 3GPP LTE network
- ► Survey of candidate IETF protocols for IP mobility
 - DS-MIPv6
 - PMIP
 - SHIM6
 - MPTCP
- ► Requirements definition
- ▶ Comparison of the considered protocols against considered requirements

P. Stupar, K. Pandit, and W. Granzow: Applicability of IETF Mobility Solutions to the 3GPP All IP Network

2 QUALGONAN

Considered requirements

- ► Supported IP version:
 - Both IPv4 and IPv6 addressing schemes are supported by 3GPP architectures.
 - IP address functionality
 - At the identifier level
 - IP address used as identifier for sockets
 - IP address used as locator
- ▶ Double jump support:
 - Mobility solutions should support the scenario where both end points of the communication perform handover concurrently.
 - This scenario can have impacts to control plane and potentially can break the communication
- ▶ Minimal impacts on the core network:
 - Current IP based mobility solutions adopted by 3GPP rely on the usage of a mobility anchor deployed in the network.
 - Deployment and maintenance costs increase directly with number of "boxes"
- Packet loss:
 - Robustness of considered protocols towards packet loss during handover must be taken into account

P. Stupar, K. Pandit, and W. Granzow: Applicability of IETF Mobility Solutions to the 3GPP All IP Network

9 QUALGOMAN

Comparison against defined requirements

	DS-MIPv6	PMIP	SHIM6	MPTCP
Supported IP version	IPv4 and IPv6 addresses are supported (route optimization supports IPv6 only)	IPv4 and IPv6 addresses are supported	IPv6 addresses are supported	IPv4 and IPv6 addresses are supported
Double jump support	Supported	Supported	Not supported	Not supported
Impacts on core network	Requirement of Mobility Anchor	Requirement of Mobility Anchor	No requirement on the network	No requirement on the network
Packet loss	New functionalities limiting packet loss can be added to mobility anchor	New functionalities limiting packet loss can be added to mobility anchor	No dedicated elements in the network to enable packet loss reduction	No dedicated elements in the network to enable packet loss reduction

P. Stupar, K. Pandit, and W. Granzow: Applicability of IETF Mobility Solutions to the 3GPP All IP Network

10 QUALCOAMA

Conclusion

- ▶ Outlined All-IP network paradigm under 3GPP prospective
- ► Analysis of 4 protocols defined in IETF
- ▶ Definition of requirements derived from 3GPP architecture
- ▶ Comparison of considered protocols against defined requirements

P. Stupar, K. Pandit, and W. Granzow: Applicability of IETF Mobility Solutions to the 3GPP All IP Network

11 QUALSONN

References

- 3GPP TS 36.300. "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2". Version 8.0.0. 2007 http://www.3gpp.org/ftp/specs/htmlinfo/36300.htm.
- ▶ 3GPP TS 23.401. "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access". Version 8.0.0. 2007. http://www.3gpp.org/ftp/specs/html-info/23401.htm..
- ▶ 3GPP TS 23.402. "Architecture enhancements for non-3GPP accesses". Version 8.0.0. 2007. http://www.3gpp.org/ftp/specs/html-info/23402.htm.
- H. Soliman, et al. " Mobile IPv6 Support for Dual Stack Hosts and Routers ". IETF RFC 5555, June 2009. http://www.ietf.org/rfc/rfc5555.txt
- ► E. Nordmark and M. Bagnulo. " Shim6: Level 3 Multihoming Shim Protocol for IPv6". IETF RFC 5533, June 2009. http://www.ietf.org/rfc/rfc5533.txt
- ► S. Gundavelli, et al. " Proxy Mobile IPv6". IETF RFC 5213, August 2008. http://www.ietf.org/rfc/rfc5213.txt
- A. Ford, et al. " Architectural Guidelines for Multipath TCP Development". IETF internet draft, February 2010. http://tools.ietf.org/id/draft-ietf-mptcp-architecture-00.txt

P. Stupar, K. Pandit, and W. Granzow: Applicability of IETF Mobility Solutions to the 3GPP All IP Network

12 QUALICOMM?

Abbreviations:

3GPP: 3rd Generation Partnership Project
CN: correspondent node
DSMIPv6: Dual Stack Mobile IPv6
E-UTRAN: Evolved UMTS Terrestrial Radio Access Network
IETF: Internet Engineering Task Force
IP: Internet Protocol
LTE: Long Term Evolution
MN: Mobile Node
MPTCP: multipath TCP
PDN: Packet Data Network
PGW: PDN Gateway
PMIPv6: Proxy Mobile IPv6
TCP: Transport Control Protocol
UDP: user datagram protocol
WLAN: Wireless Local Area Network

P. Stupar, K. Pandit, and W. Granzow: Applicability of IETF Mobility Solutions to the 3GPP All IP Network

13 QUALGOMAN'